Proposal for a Council Decision establishing the Specific Programme implementing Horizon 2020

5. CLIMATE ACTION, RESOURCE EFFICIENCY AND RAW MATERIALS

5.1. Fighting and adapting to climate change

Current CO₂ concentrations in the atmosphere are close to 40 % higher than those at the start of the industrial revolution and at the highest levels experienced in the last 2 million years. Non-CO₂ greenhouse gases also contribute to climate change and are playing an increasingly significant role. Without decisive action, climate change could cost the world at least 5 % of GDP each year; and up to 20 % under some scenarios. In contrast, with early and effective action the net costs could be limited to around 1 % of GDP per year. Meeting the 2°C target and avoiding the worst impacts of climate change will require developed countries to cut greenhouse gas emissions by 80-95 % by 2050 compared to 1990 levels.

The aim of this activity is therefore to develop and assess innovative, cost-effective and sustainable adaptation and mitigation measures, targeting both CO₂ and non-CO₂ greenhouse gases, and underlining both technological and non-technological green solutions, through the generation of evidence for informed, early and effective action and the networking of the required competences.

To achieve this, research and innovation will focus on the following:

5.1.1. Improve the understanding of climate change and the provision of reliable climate projections

Better understanding of the causes and evolution of climate change and more accurate climate projections are crucial for society to protect lives, goods and infrastructures and ensure effective decision making. It is essential to further improve the scientific knowledge-base of climate drivers, processes, mechanisms and feedbacks associated with the functioning of oceans, terrestrial ecosystems and the atmosphere. Improved climate predictions at pertinent temporal and spatial scales will be supported via the development of more accurate scenarios and models, including fully coupled Earth-system models.

5.1.2. Assess impacts, vulnerabilities and develop innovative cost-effective adaptation and risk prevention measures:

There is incomplete knowledge on the ability of society and the economy to adapt to climate change. Effective, equitable and socially acceptable measures towards a climate resilient environment and society require the integrated analysis of current and future impacts, vulnerabilities, population exposure, risks, costs and opportunities associated with climate change and variability, taking into account extreme events and related climate-induced hazards and their recurrence. This analysis will also be developed on the adverse impacts of climate change on biodiversity, ecosystems and ecosystem services, infrastructures and economic and natural assets. Emphasis will be placed on the most valuable natural ecosystems and built environments, as well as key societal, cultural and economic sectors across Europe. Actions will investigate the impacts and growing risks for human health stemming from climate change and increased greenhouse gases concentrations in the atmosphere. Research will evaluate innovative, equitably distributed and cost-effective adaptation responses to climate change, including the protection and adaptation of natural resources and ecosystems, and related effects, to inform and support their development and implementation at all levels and scales. This will also include the potential impacts, costs and risks, of geo-engineering options. The complex inter-linkages, conflicts and synergies of adaptation and risk-prevention policy choices with other climate and sectoral policies will be investigated, including impacts on employment and the living standards of vulnerable groups. 5.1.3. Support mitigation policies

The Union's transition to a competitive, resource efficient and climate change resilient economy by 2050 requires the design of effective, long-term, low-emission strategies and major advancements in our capacity to innovate. Research will assess the environmental and socio-economic risks, opportunities and impacts of climate change mitigation options. Research will support the development and validation of new climate-energy-economy models, taking into account economic instruments and relevant externalities, with the aim of testing mitigation policy options and low carbon technology pathways at different scales and for the key economic and societal sectors at Union and global level. Actions will facilitatetechnological, institutional and socio-economic innovation by improving the links between research and application and between entrepreneurs, end users, researchers and knowledge institutions.

5.2. Sustainably managing natural resources and ecosystems

Societies face a major challenge to establish a sustainable balance between human needs and the environment. Environmental resources, including water, air, biomass, fertile soils, biodiversity, ecosystems and the services they provide, underpin the functioning of the European and global economy and quality of life. Global business opportunities related to natural resources are expected to amount to over EUR 2 trillion by 2050₂₅. Despite this, ecosystems in Europe and globally are being degraded beyond nature's ability to regenerate them and environmental resources are being over-exploited. For example, 1000 km² of some of the most fertile soils and valuable ecosystems are lost every year in the Union, while a quarter of fresh water is wasted. Continuing these patterns is not an option. Research must contribute to reversing the trends that damage the environment and to ensuring that ecosystems continue to provide the resources, goods and services that are essential for wellbeing and economic prosperity.

The aim of this activity is therefore to provide knowledge for the management of natural resources that achieves a sustainable balance between limited resources and the needs of society and the economy.

To achieve this, research and innovation will focus on the following:

5.2.1. Further our understanding of the functioning of ecosystems, their interactions with social systems and their role in sustaining the economy and human well-being.

Society's actions risk triggering changes in the environment that are irreversible and which alter the character of ecosystems. It is vital to anticipate these risks by assessing, monitoring and forecasting the impact of human activities on the environment, and environmental changes on human well-being. Research on marine, (from coastal zones to the deep sea), fresh-water, terrestrial and urban ecosystems, including groundwater dependent ecosystems, will improve our understanding of the complex interactions between natural resources and social, economic, and ecological systems, including natural tipping points, and the resilience, or fragility, of human and biological systems. It will examine how ecosystems function and react to anthropogenic impacts, how they can be restored, and how this will affect economies and human well-being. It will also investigate solutions for addressing resource challenges. It will contribute to policies and practices that ensure that social and economic activities operate within the limits of the sustainability and adaptability of ecosystems and biodiversity.

5.2.2. Provide knowledge and tools for effective decision making and public engagement Social, economic and governance systems still need to address both resource depletion and the damage to ecosystems. Research and innovation will underpin policy decisions needed to manage natural resources and ecosystems so as to avoid, or adapt to, disruptive climate and environmental change and to promote institutional, economic, behavioural and technological change that ensure sustainability. Emphasis will be put on critical policy relevant ecosystems and ecosystem services, such as fresh water, seas and oceans, air quality, biodiversity, land use and soil. The resilience of societies and ecosystems to catastrophic events, including natural hazards, will be supported through improving capacities for forecasting, early warning, and assessing vulnerabilities and impacts, including the multi-risk dimension. Research and innovation will thus provide support for environmental and resource efficiency policies, and options for effective evidence-based governance within safe operating limits. Innovative ways will be developed to increase policy coherence, resolve trade-offs and manage conflicting interests, and improve public awareness of research results and the participation of citizens in decision-making.

5.3. Ensuring the sustainable supply of non-energy and non-agricultural raw materials

Sectors such as construction, chemicals, automotive, aerospace, machinery and equipment, which have a combined added value in excess of EUR 1,000 billion and provide employment for some 30 million people, all depend on access to raw materials. The Union is self-sufficient in construction minerals. Nonetheless, whilst the Union is one of the world's largest producers of certain industrial minerals, it remains a net importer of most of them. Furthermore, the Union is highly dependent on imports of metallic minerals and is totally import dependent for some critical raw materials.

Recent trends indicate that demand for raw materials will be driven by the development of emerging economies and by the rapid diffusion of key enabling technologies. Europe has to ensure a sustainable management and secure a sustainable supply of raw materials from inside and outside its borders for all sectors that depend on access to raw materials. Policy targets for critical raw materials are outlined in the Commission's Raw Materials Initiative₂₆.

The aim of this activity is therefore to improve the knowledge base on raw materials and develop innovative solutions for the cost-effective and environmentally friendly exploration, extraction, processing, recycling and recovery of raw materials and for their substitution by economically attractive alternatives with a lower environmental impact.

To achieve this, research and innovation will focus on the following:

5.3.1. Improve the knowledge base on the availability of raw materials

The assessment of the long-term availability of global and Union resources, including access to urban mines (landfills and mining waste), deep-sea resources (e.g., the sea-bed mining of rare earth minerals) and the associated uncertainties will be improved. This knowledge will help society reach a more efficient use, recycling and reuse of scarce or environmentally harmful raw materials. It will also develop global rules, practices and standards governing economically viable, environmentally sound and socially acceptable resource exploration, extraction and processing, including practices in land use and marine spatial planning.

5.3.2. Promote the sustainable supply and use of raw materials, covering exploration, extraction, processing, recycling and recovery

Research and innovation is needed over the entire life cycle of materials, in order to secure an affordable, reliable, and sustainable supply and management of raw materials essential for European industries. Developing and deploying economically viable, socially acceptable and environmentally friendly exploration, extraction and processing technologies will boost the efficient use of resources. This will also exploit the potential of urban mines. New and economically viable recycling and materials recovery technologies, business models and processes will also contribute to reducing the Union's dependence on the supply of primary raw materials. This will include the need for longer use, high-quality recycling and recovery, and the need to drastically reduce resource wastage. A full life-cycle approach will be taken, from the supply of available raw materials to end of life, with minimum energy and resources requirements.

5.3.3. Find alternatives for critical raw materials

In anticipation of the possible reduced global availability of certain materials, due for example to trade restrictions, sustainable substitutes and alternatives for critical raw materials, with similar functional performance, will be investigated and developed. This will reduce the Union's dependence on primary raw materials and improve the impact on the environment. *5.3.4. Improve societal awareness and skills on raw materials*

The necessary move to a more self-reliant and resource efficient economy will require cultural, behavioural, socio-economic and institutional change. In order to address the growing problem of skills shortage in the Union's raw materials sector, (including the European mining industry), more effective partnerships between universities and geological surveys and industry will be encouraged. It will also be essential to support the development of innovative green skills. In addition there is still limited public awareness of the importance of domestic raw materials for the European economy. To facilitate the necessary structural changes, research and innovation will aim to empower citizens, policy-makers, practitioners and institutions.

5.4. Enabling the transition towards a green economy through eco-innovation

The Union cannot prosper in a world of ever increasing resource consumption, environmental degradation and biodiversity loss. Decoupling growth from the use of natural resources requires structural changes in how such resources are used, re-used and managed, while safeguarding our environment. Eco-innovations will enable us to reduce pressure on the environment, increase resource efficiency, and put the Union on the path to a resource and energy efficient economy. Eco-innovation also creates major opportunities for growth and jobs, and increases European competitiveness within the global market, which is estimated to grow to a trillion Euro market after 2015₂₇. Already 45 % of companies have introduced some type of eco-innovation. It has been estimated that around 4 % of eco-innovations led to more than a 40 % reduction of material use per unit of output28, highlighting the great future potential.

The aim of this activity is therefore to foster all forms of eco-innovation that enable the transition to a green economy.

To achieve this, research and innovation will focus on the following:

5.4.1. Strengthen eco-innovative technologies, processes, services and products and boost their market uptake.

All forms of innovation, both incremental and radical, combining technological, organisational, societal, behavioural, business and policy innovation, and strengthening the participation of civil society, will be supported. This will underpin a more circular economy, while reducing environmental impacts and taking account of rebound effects on the environment. This will include business models, industrial symbiosis, product service systems, product design, full life cycle and cradle-to-cradle approaches. The aim will be to improve resource efficiency by reducing, in absolute terms, inputs, waste and the release of harmful substances along the value chain and foster re-use, recycling and resource substitution. Emphasis will be given to facilitate the transition from research to market, involving industry and notably SMEs, from the development of prototypes to their introduction in the market and replication. Networking among eco-innovators will also seek to enhance the dissemination of knowledge and better link supply with demand. *5.4.2. Support innovative policies and societal changes*

Structural and institutional changes are needed to enable the transition towards a green economy. Research and innovation will address the main barriers to societal and market change and will aim to empower consumers, business leaders and policy makers to adopt innovative and sustainable behaviour. Robust and transparent tools, methods and models to assess and enable the main economic, societal and institutional changes needed to achieve a paradigm shift towards a green economy will be developed. Research will explore how to promote sustainable consumption patterns, encompassing socio-economic research, behavioural science, user engagement and public acceptance of innovation, as well as activities to improve communication and public awareness. Full use will be made of demonstration actions.

5.4.3. Measure and assess progress towards a green economy

It is necessary to develop robust indicators at all appropriate spatial scales that are complementary to GDP, methods and systems to support and assess the transition towards a green economy and the effectiveness of relevant policy options. Driven by a life-cycle approach, research and innovation will improve the quality and availability of data, measurement methods and systems relevant to resource efficiency and eco-innovation and facilitate the development of innovative offset schemes. Socio economic research will provide a better understanding of the root causes of producer and consumer behaviour and thus contribute to the design of more effective policy instruments to facilitate the transition to a resource efficient and climate change resilient economy. Moreover, technology assessment methodologies and integrated modelling will be developed to support resource efficiency and eco-innovation policies at all levels, while increasing policy coherence and resolving tradeoffs. The results will enable the monitoring, assessment and reduction in material and energy flows involved in production and consumption, and will enable policy-makers and businesses to integrate environmental costs and externalities into their actions and decisions.

5.4.4. Foster resource efficiency through digital systems

Innovations in information and communication technologies can constitute a key tool to support resource efficiency. To achieve this objective, modern and innovative ICT will contribute to significant efficiency gains in productivity, notably through automated processes, real time monitoring and decision support systems. The use of ICT will look to accelerate a progressive dematerialisation of the economy, by increasing the shift towards digital services, and to facilitate changes of consumption behaviours and business models through the use of the ICT of the future.

5.5. Developing comprehensive and sustained global environmental observation and information systems

Comprehensive environmental observation and information systems are essential to ensure the delivery of the long-term data and information required to address this challenge. These systems will be used to assess and predict the condition, status and trends of the climate, natural resources including raw materials, ecosystems and ecosystem services, as well as to evaluate low-carbon and climate mitigation and adaptation policies and options across all sectors of the economy. Information and knowledge from these systems will be used to stimulate the smart use of strategic resources; to support the development of evidence-based policies; to foster new environmental and climate services; and to develop new opportunities in global markets.

Capabilities, technologies and data infrastructures for earth observation and monitoring must build on advances in ICT, space technologies and enabled networks, remotely sensed observations, novel in situ sensors, mobile services, communication networks, participatory web-service tools and improved computing and modelling infrastructure, with the aim of continuously providing timely and accurate information, forecasts and projections. Free, open and unrestricted access to interoperable data and information will be encouraged, as well as the effective storage, management and dissemination of research results.

5.6. Specific implementation aspects

Activities will enhance the Union's participation in and financial contribution to multilateral processes and initiatives, such as the Intergovernmental Panel on Climate Change (IPCC), the

Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), and the Group on Earth Observations (GEO). Cooperation with other major public and private research funders will improve global and European research efficiency and contribute to global research governance.

S&T cooperation will contribute to the UNFCCC global technology mechanism and facilitate technology development, innovation and transfer in support of climate adaptation and the mitigation of greenhouse gases. Building on the outcomes of the UN Rio+20 Conference, a mechanism will be explored to

systematically collect, collate and analyse scientific and technological knowledge on key sustainable development and green economy issues, which will include a framework for measuring progress. This will complement existing scientific panels and bodies and seek synergies with them.

Research actions under this challenge will contribute to Global Monitoring for Environment and Security (GMES) operational services by providing a developmental knowledge base for GMES.

Specific measures will ensure that results from Union research and innovation in the fields of climate, resource efficiency and raw materials are used downstream by other Union programmes, such as the LIFE + programme, regional and structural funds, and external cooperation programmes.

An Advisory Network of Institutes may be established to provide: the continuous analysis of scientific and technological progress in the Union and its major partner countries and regions; an early investigation of market opportunities for new environmental technologies and practices; foresight for research & innovation and policy.

The document is available at:

http://ec.europa.eu/research/horizon2020/pdf/proposals/proposal_for_a_council_decision_establishi ng_the_specific_programme_implementing_horizon_2020_-

_the_framework_programme_for_research_and_innovation_(2014-

2020).pdf#view=fit&pagemode=none